UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍA INGENIERÍA DE MANUFACTURA

Nombre y código de la asignatura			Laboratorio de Física II – CB342					
Área académica			Ciencias Naturales y Matemáticas					
Semestre	Créditos	Requisitos	Horas presenciales (HP)			Horas de trabajo	Total de horas	
			Teóricas	Prácticas	HP Totales	independiente		
3	2	CB234 CB242	0	2	2	4	6	

Año de actualización de la asignatura: 2022

1. Breve descripción

El curso de Laboratorio de Física II está ubicado dentro del ciclo de formación básico, dirigido a los estudiantes de pregrado de todos los programas afines a áreas técnicas y tecnológicas de la Universidad Tecnológica de Pereira que, en concordancia con los contenidos de las leyes, conceptos y enunciados descritos con el curso de Física II; se enfoca en el desarrollo de una serie de experiencias prácticas que permitan de manera individual y colectiva el conocimiento, entendimiento y contextualización de las aplicaciones que actualmente se enfocan en la teoría electromagnética.

2. Objetivo general

Verificar experimentalmente las leyes de Maxwell que rigen el comportamiento de los fenómenos eléctricos y magnéticos.

3. Resultados de aprendizaje de asignatura

El estudiante:

- 1. Usa adecuadamente los recursos de la metrología para entender y calcular los distintos errores asociados a la medición de variables eléctricas y magnéticas.
- 2. Conoce y entiende las diferencias y/o similitudes de los conceptos asociados a los fenómenos eléctricos y magnéticos.
- 3. Planifica, construye y analiza el comportamiento de un circuito sencillo de corriente directa DC. 4. Mejora sus habilidades de comunicación oral y escrita, mediante la interacción con grupos interdisciplinarios, valorando las críticas e ideas de sus pares, para lograr identificar rasgos de liderazgo en su formación académica.
 - 5. Usa adecuadamente los sistemas informáticos y la matemática como herramientas útiles para el análisis de los conceptos asociados a la electricidad y el magnetismo, inmersos en los datos experimentales.

4. Contenido

- 1. Presentación de los experimentos (~2 horas)
- 2. Manejo de equipos eléctricos (~2 horas)
- **3.** Ley de coulomb (~2 horas)
- 4. Líneas equipotenciales (~2 horas)
- **5.** Resistividad (~2 horas)
- **6.** Ley de ohm (~2 horas)
- 7. Circuitos en serie y en paralelo (~2 horas)
- 8. Parámetros de un galvanómetro y construcción de un voltímetro (~2 horas)
- 9. Presentación de los experimentos (~2 horas)
- **10.** Capacitores (~2 horas)
- 11. Manejo del osciloscopio (~2 horas)
- 12. Campo magnético terrestre (~2 horas)
- **13.** Ley de ampere (~2 horas)
- 14. Aplicaciones tecnológicas de la electricidad y el magnetismo (~2 horas)
- **15.** Resistencia interna de una pila (~2 horas)
- **16.** Puente de wheatstone (~2 horas)

5. Recursos y bibliografía

Recursos:

Internet, recursos audiovisuales, biblioteca, Centro de Documentación de la Facultad de Ingeniería Mecánica. **Bibliografía:**

- 1. Marcelo Alonso & Edward J. Finn. Física. Vol. II: Campos y Ondas.
- 2. Sears, Francis W. Zemansky, Mark W. Young. Física Universitaria. Electricidad y Magnetismo (Tomo 2).
- 3. Serway Raymond A. Física para Ciencias e Ingeniería. Ed. 5; Tomo II.
- 4. Wolfgang K. H. Panofsky, Melba Phillips. Classical electricity and magnetism. 2nd ed. 5. Richard P. Feynman, Robert B. Leighton, Matthew Sands. The Feynman Lectures on Physics. Mainly Electromagnetism and Matter.

6. Metodología

Se plantea una decidida y activa intervención del docente en su rol de orientador e impulsor de actividades que promuevan el pensamiento creativo, crítico y reflexivo, promoviendo la participación autónoma del estudiante y el desarrollo continuo de su formación profesional a través de la elaboración de proyectos. Se emplearán varios métodos:

Método deductivo: se inicia con explicaciones orientadoras del contenido de cada práctica de laboratorio, donde el docente plantea los aspectos más significativos, conceptos, principios, leyes y métodos esenciales, proponiendo la elaboración de preinformes de laboratorio que incentivan la búsqueda de información y el autoaprendizaje, para que el estudiante cuente con los conocimientos previos que le permiten ejecutar una práctica de laboratorio.

Método activo: Durante el desarrollo de la práctica de laboratorio, el docente y un monitor auxiliar apoyarán el trabajo de los estudiantes sin la intervención directa, pero con la vigilancia de los procesos. **Método expositivo:** Aportar desde la experiencia del docente un mayor análisis en la interpretación de datos y resultados. Al cierre de la práctica, el docente concluirá la actividad con un primer cuestionamiento de los resultados obtenidos en cada experimento. Esto será reforzado con el análisis de los datos posteriores.

7. Evaluación

Como forma evaluativa del curso se desarrollan:

Realización de preinformes: Al inicio de la práctica se verificará el cumplimiento de la preparación de la práctica mediante la presentación del preinforme y su posterior discusión.

Capacidades de ejecución: Durante el desarrollo de la práctica se verifica que el trabajo en grupo se realice de forma ordenada.

Realización de Informe final: Realización del informe, sustentación del mismo, discusión de las conclusiones obtenidas.